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Abstract

This paper presents numerical prediction of characteristics of laminar, as well as, turbulent flow and heat transfer in

a square sectioned duct inserted with a twisted tape, whose width equals the length of the duct side. The heat transfer

characteristics are predicted under axially and peripherally constant wall heat flux conditions. As such, the flow and

heat transfer are periodically fully developed in axial direction. Correlations for friction factor and Nusselt number are

derived from the predicted data. The correlation for friction is compared with the experimental data, which are found to

be in reasonably good agreement with each other, for both laminar and turbulent flows.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Insertion of twisted tapes in circular tubes provides a

simple passive technique for enhancing the convective

heat transfer coefficient on the tube side of a heat ex-

changer. Twisted tape inserts are used to achieve com-

pact heat exchangers, as well as, to prevent hot spots in

high heat flux transfer situations encountered with gas

flows.

A duct of square cross-section provides higher sur-

face to volume ratio than a circular tube. Further, if a

square duct is inserted with a twisted tape, whose width

equals the side of the duct, the flow becomes periodically

fully developed with the distance of periodicity equals to

90� rotation of the tape. Similarly, the heat transfer also

attains periodically fully developed state. Thus, both the

flow and heat transfer are under continuous state of

periodic development. Therefore, compared to a circu-

lar tube with a twisted tape insert, a higher thermal-

hydraulic performance can be expected from a square

duct with a twisted tape insert.

Fig. 1a shows the layout of a square duct with a full-

length twisted tape. The pitch for 180� rotation is H . The

width of the tape equals length of the side, a, of the duct.
The tape thickness is d, with d=a � 1=30. The twisted

tape thus makes contact with the duct sides at every H=2
distance (or, after every 90� rotation); in between, the

tape looses contact with duct sides providing free flow

area on either side of its width (Fig. 1b).

It will be appreciated that at any cross-section both

flow and heat transfer will exhibit cross-mirror-image

symmetry. As such, attention may be focussed on a

cross-section on any one side of the tape. Such a cross-

section, although having constant area (i.e., half of the

cross-sectional area of square duct) will have different

shapes at different axial locations. The same shape and

orientation will however repeat after every 2H distance

in the axial direction.

Mano et al. [1] and Bhadsavle [2] have presented

experimentally determined correlations of friction fac-

tors for flow in a square duct with twisted tape insert.

On comparison, however, it is observed that the corre-

lations are at considerable variance with each other [3].

These correlations and the correlation obtained from the

present study are compared with the experimental data

in Section 4.4, which clearly show this disagreement. The

purpose of this paper is therefore to present experi-

mentally and numerically determined data covering a

wide range of Reynolds number, Prandtl number and

twist ratio ðY ¼ H=aÞ.
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Section 2 of this paper provides the mathematical

formulation of the problem. Section 3 discusses the

computational aspects. The results are discussed in

Section 4 and the conclusions are reported in Section 5.

2. Mathematical formulation

2.1. Governing equations

Consider conservation equations in Cartesian coor-

dinates ðx1; x2; x3Þ, in which, x3 is aligned with the axis of

the duct and x1 and x2 are as shown in Fig. 1b. When

these equations are transformed to curvilinear coordi-

nates ðn1; n2; n3Þ, they can be written in the following

general form:

J
o

ot
ðq/Þ þ

X3

i¼1

o

oni
qUi/

�
� Di

o/
oni

�
¼ S/ ð1Þ

where Di and S/ are interpreted in Table 1. Further

definitions are given in Table 2. The tables show that

when / ¼ 1, mass conservation equation is retrieved.

The momentum equations are written for Cartesian

velocity components ð/ ¼ ujÞ. It is important to note

that the term Di o/=oni represents the dummy diffusion

normal to ni ¼ constant surfaces. The true Cartesian

diffusion is included in the source terms through gradi-

ent of stresses, sij, and scalar fluxes, q/
k . For turbulent

flows, the high turbulent Reynolds number k–e model of

turbulence is employed with model constants, Cl ¼ 0:09,
C1 ¼ 1:44, C2 ¼ 1:92, re ¼ 1:0, re ¼ 1:3 and rT ¼ 0:9
[4,5].

Nomenclature

a side of the square duct, m

Ac cross-sectional area of the duct, m2

Bj body force in the jth momentum equation

Ci constants ði ¼ l; 1; 2Þ
Cp specific heat, J/kgK

dAi elemental area, perpendicular to ni ¼
constant surface, m2

D diffusion coefficient in the / conservation

equation

Di general diffusion coefficient

e turbulent kinetic energy

E constant in law of wall

f friction factor

G production of turbulent kinetic energy

Di contravariant mass velocity, qUi ði ¼ 1; 2;
3Þ, kg/m2 s

hx3 ,
�hh local and average heat transfer coefficients,

W/m2 K

H pitch for 180� rotation, m
J Jacobian of the coordinate transformation

k thermal conductivity, W/mK

n normal direction

Nux3 , Nu local and average Nusselt number

p pressure, N/m2

�pp control volume averaged pressure

p0 total pressure correction

p0m mass conserving pressure correction

p0s smoothing pressure correction

Pr Prandtl number

qw wall heat flux, W/m2

q/
k scalar fluxes of /

Re Reynolds number

Sc duct perimeter, m

Sw swirl parameter

S/ source term in the / conservation equation

t time, s

T temperature, K

Tb bulk temperature, K

Tw, T w local and average wall temperature, K

ui Cartesian velocity components ði ¼ 1; 2; 3Þ,
m/s

us friction velocity

Ui contravariant velocity components ði ¼ 1; 2;
3Þ, m3/s

V t
xi

ith component of tangential velocity vector,

m/s

xi Cartesian coordinates

yþ wall coordinate

Y twist ratio ðH=aÞ

Greek symbols

bp mean axial pressure gradient, N/m3

bi
j geometric factors

d tape thickness, m

Dn normal distance between nodes

e dissipation

/ general variable

j constant in law of wall

q density, kg/m3

ni curvilinear coordinates ði ¼ 1; 2; 3Þ
l dynamic viscosity, N s/m2

leff effective viscosity, N s/m2

lt turbulent viscosity, N s/m2

h twist angle, rad

sij shear stress, N/m2

r turbulent Prandtl number
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In Eq. (1), n3 coincides with x3, but n1 and n2 are

generated by using the method of elliptic grid generation

suggested Sorenson [6] at every cross-section in the

periodic domain. Fig. 2 shows typical grids used for

laminar and turbulent flows, at a cross-section, where

h ¼ 22:5�.

2.2. Boundary conditions

In the present method, the solutions are obtained

only for the interior points. This is done by eliminating

the boundary points from the discretised equations for

near boundary control volume, using the boundary

conditions. The boundary values are evaluated subse-

quently from the solutions of the interior points. The

boundary conditions for the present problem can be

classified into two categories:

1. wall condition,

2. periodicity condition.

2.2.1. Wall boundary conditions

On the duct and the tape surfaces, all the velocities

are set equal to zero to implement the no-slip condition.

The duct is also subjected to a constant axial peripheral

and axial wall heat flux. Therefore, the boundary con-

ditions can be expressed asFig. 1. Geometry of the square duct with twisted tape insert.

Table 2

Terms in Table 1

Symbol Meaning Definition

Ui Contravariant flow velocity
P3

j¼1b
j
i uj

sij Stresses ðleff=JÞ
P3

k¼1ðb
i
k ouj=onk þ bj

k oui=onkÞ � 2
3
qdije

q/
k Flux of / �ðCeff;/=JÞ

P3
j¼1b

k
j o/=onj

leff Effective viscosity l þ lt ¼ l þ clqe2=e

Ceff ;/ Effective diffusivity for scalar / ðl=PrÞ þ clqe2=er/

bi
j Geometric coefficients ðoxj=onkÞðoxk=oniÞ � ðoxj=oniÞðoxk=onkÞ, k 6¼ i; j

J Cell volume
P3

k¼1b
k
i oxk=oni, i ¼ 1; 2 or 3

dAi Cell-face area ½
P3

j¼1ðb
j
i Þ

2
1=2

G Production of T.K.E. sij
P3

k¼1ðb
j
k=JÞðoui=onkÞ

Bj Body force

Table 1

Meaning of Di and S/

/ Di S/

1 0 0

Uj leff dA
2
i =J �

P3
k¼1b

j
k op=onk þ

P3
i¼1o

P3
k¼1b

k
i sjk � Di ouj=oni

h i.
oni þ Bj

T Ceff;T dA2
i =J �

P3

i¼1o
P3

k¼1b
k
i q

T
k þ Di oT=oni

h i.
oni

e Ceff;k dA2
i =J G� qe �

P3

i¼1o
P3

k¼1b
k
i q

e
k þ Di oe=oni

h i.
oni

e Ceff;e dA2
i =J ðe=eÞðC1G� C2qeÞ �

P3
i¼1o

P3
k¼1b

k
i q

e
k þ Di oe=oni

h i.
oni
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uj ¼ 0; for j ¼ 1; 2; 3 ð2Þ

and

�k oT=on ¼ qw at n2 ¼ n2;max ð3Þ

where ‘‘n’’ denotes the normal derivative and qw repre-

sents the applied wall heat flux. Therefore, qw ¼ 0, on

the tape surface (at n1 ¼ 0; n1;max) as the tape is consid-

ered to be insulated.

For turbulent flows, wall function approach is

adopted. On a solid boundary of constant ni, in order to

calculate the stresses (and hence, the source terms), the

tangential velocity component (V t
xl
, the xl component of

the tangential velocity vector), normal distance ðjDnjÞ
and the effective viscosity ðleffÞ are required. The first

two quantities remain same for both laminar and tur-

bulent flows and are given by

V t
xl
¼ ul 1

"
� bl

i

dAi

	 
2
#
�

X3

n¼1;n6¼l

un
bl
i

dAi

	 

bn
i

dAi

	 

ð4Þ

Dn ¼
P3

n¼1 bn
i ðoxn=oniÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

n¼1ðb
n
i Þ

2
q ð5Þ

For laminar flows, leff is simply replaced by l.
However, for turbulent flows, when yþð¼ yus=mÞP 11:6,
this is obtained as

leff

jDnj ¼
qusj

lnðEyþÞ ð6Þ

where the friction velocity, us, is obtained as

us ¼ C1=4
l e1=2P ð7Þ

In the energy equation, the wall heat flux is expressed

as

qw ¼ keff
ðTB � TP Þ

jDnj ð8Þ

where TB and TP are the temperatures of the boundary

and the near boundary nodes respectively and qw is

considered to be positive, if it is added to the compu-

tational domain. For laminar flow, keff ¼ k. For turbu-
lent flow, keff is recovered from the law of the wall for

temperature, given by

Tþ
P ¼ TB � TP

qw=qCpus
¼ rT ðPFþ uþP Þ ð9Þ

where the function PF is considered as

PF ¼ 9:24
Pr
rT

	 
0:75
"

� 1

#
ð10Þ

Thus, from Eqs. (8) and (9), keff is obtained as

keff ¼
qCpusjDnj

rT ðPFþ uþP Þ
ð11Þ

In the ‘‘wall function’’ approach, the source term of

the turbulent kinetic energy equation, Se for the near

boundary node is calculated as

Se ¼ JðG� qeÞ ¼ J stot
oV t

on

����
B

�
� q�eeP

�

¼ J
leff

ðDnÞ2
X3

i¼1

ðV t
xi ;B

"
� V t

xi ;P
Þ2 � q�eeP

#
ð12Þ

where �eeP is the average dissipation at node ‘‘P ’’ and is

obtained as

�eeP ¼ 1

Dn

Z Dn

0

edn ¼ u3s
jDn

lnðEyþÞ ¼ qu2s
leff

C1=2
l eP ð13Þ

Fig. 2. Typical numerical grid for h ¼ 45�: (a) laminar flow and (b) turbulent flow.

892 S. Ray, A.W. Date / International Journal of Heat and Mass Transfer 46 (2003) 889–902



For e equation, the value at node ‘‘P ’’ is frozen at

u3s=jDn.

2.2.2. Axial periodicity

In order to model the axial periodicity, the pressure

in Cartesian coordinates is written as

pðx1; x2; x3Þ ¼ �bx3 þ P ðx1; x2; x3Þ ð14Þ

In the above equation, bpð¼ D�pp=2HÞ is the mean axial

pressure gradient over the periodic distance 2H . With

the introduction of the new pressure, P , the transformed

x3 momentum equation now contains an additional

source term, Jbp. In all the momentum equations, p is

replaced by P .
Computations are first carried out by applying the

boundary conditions for long periodicity, over a length

2H , to verify the existence of short periodicity over H=2.
In the former case, the boundary conditions at x3 ¼ 0,

or, n3 ¼ 0 and x3 ¼ 2H , or, n3 ¼ n3;max of the computa-

tional domain are represented by

ujjn3¼0 ¼ ujjn3¼n3;max
for j ¼ 1; 2; 3 ð15aÞ

ðe; e; P Þjn3¼0 ¼ ðe; e; P Þjn3¼n3;max
ð15bÞ

T jn3¼0 þ DT3 ¼ T jn3¼n3;max
ð15cÞ

where DT3 is the temperature rise in the axial direction,

over the length of periodicity. For shorter periodicity

ðx3;max ¼ H=2Þ, the conditions for u1 and u2 only change

and they are given as

u1jn3¼0 ¼ �u2jn3¼n3;max
ð16aÞ

u2jn3¼0 ¼ u1jn3¼n3;max
ð16bÞ

2.2.3. Cross-periodicity

The cross-periodicity condition in the fluid domain

(free flow area) for the half duct, at any axial station, is

represented as

u1;2jn1¼0 ¼ �u1;2jn1¼n1;max
ð17aÞ

ðu3; e; e; T ; P Þjn1¼0 ¼ ðu3; e; e; T ; P Þjn1¼n1;max
ð17bÞ

3. Computational aspects

3.1. Method of solution

Governing equations (1) are discretised by control

volume based finite difference technique on non-stag-

gered grid. The discretised equations are solved se-

quentially, in which, following the strategy adopted in

the SIMPLE algorithm [7,8], the pressure distribution is

recovered by solving a pressure correction equation, that

implicitly satisfies the mass conservation equation.

On non-staggered grid, however, the pressure gradi-

ent evaluation at a node becomes decoupled from the

velocity at the node, which, in turn, results in checker

board prediction of pressure on coarse grids [9]. But

since the overall algorithm is of the SIMPLE type this

difficulty is removed by solving an equation for total

pressure correction ðp0Þ, which reads as

o

oni
Di

op0

oni

	 

¼ oGi

oni
for i ¼ 1; 2; 3 ð18Þ

where Gi are the contravariant mass velocity and Di are

the appropriate coefficients. The mass conserving pres-

sure correction ðp0mÞ is recovered from the total pressure

correction as follows:

p0m ¼ p0 � p0s ð19Þ

where p0s is the smoothing pressure correction, which is

defined as

p0s ¼ 0:5ðp � �ppÞ ð20Þ

and �pp is the control volume averaged pressure. Complete

derivation of the above smoothing procedure can be

found in [10,11].

3.2. Convergence and accuracy

The discretised equations are solved by an iterative

process. Since, the fluid properties are assumed to be

uniform, the equations for flow variables are solved first,

followed by the solution of the energy equation. The

convergence is checked by the L2 norm of the residues;

i.e., if R/
i;j;k is the residual in the discretised equation for

variable / at node ði; j; kÞ, then, L2 ¼ ½
P

i;j;kðR
/
i;j;kÞ

2
1=2.
For velocities and pressure, convergence is declared

when L2 6 10�4; and for temperature, L2 6 10�6. The

laminar flow solutions typically converged within 300–

600 iterations; the number of iterations increasing with

Reynolds number and decreasing with twist ratio. Glo-

bal under-relaxation factor, a ¼ 0:5, proved to be ade-

quate. Convergence of turbulent flow equations however

required special care. For first 1000 iterations, compu-

tations are carried out using false transient technique, so

as to achieve reasonable distribution of flow variables.

Subsequently, computations are carried out using global

under-relaxation factor a ¼ 0:1 to obtain complete

convergence.

The accuracy of the solution is concerned with two

aspects. Thus, although the flow is truly periodic over

H=2 distance (90� rotation of the tape) along the axial

direction, computations are carried out over 2H distance

to ensure that the shorter distance periodicity in fact

reproduced. Evidence of this will be shown in Section 4.

The second aspect concerns grid independence of the

solutions. To test this, computations are carried out

using 15 ðn1Þ � 10 ðn2Þ � 13 (n3, with 2H periodicity)
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grid at highest Reynolds number (�1100) and Prandtl

number ðPr ¼ 500Þ under laminar flow conditions. The

grids are then refined to 23� 18� 25, 39� 32� 49 and

67� 62� 89. Since, the values of f , Nu and Re for the

last two grids differed by less than 0.5%, all computa-

tions are performed with 39� 32� 49 grids for 2H pe-

riodicity and 39� 32� 13 grids for the H=2 periodicity.

Same grid size is used for turbulent flow calculations,

however, care has been taken to place the first grid line

next to the solid wall at yþ � 20.

4. Results and discussion

4.1. Evaluation of Re, f and Nu

The dimensional analysis of the transport equations

and the boundary conditions shows that the pitch-

averaged friction factor, f , and the Nusselt number, Nu,
must bear the following functional relationships: 1

f ¼ f ðRe; Y ; d=aÞ ð21Þ

Nu ¼ NuðRe; Y ; d=a; PrÞ ð22Þ

In the present computations, flow variables are

solved for a prescribed value of bp. From the converged

solutions, �uu3 is calculated at each cross-section from

�uu3 ¼
1

Ac

Z
Ac

u3 dAc ð23Þ

where Ac is the cross-sectional area. At convergence, �uu3
at different axial stations are observed to be constant up

to fourth places of decimal. From �uu3, Re and f are

evaluated as

Re ¼ q�uu3a=l ð24Þ

f ¼ bpa=2q�uu
2
3 ð25Þ

In the solution of the energy equation, since H2

boundary condition is used, the average wall ðT wÞ and

the bulk temperature ðTbÞ at every cross-section are

calculated as

T w ¼ 1

Sc

Z
Sc

Tw dS ð26Þ

Tb ¼
R
Ac
u3T dAcR

Ac
u3 dAc

ð27Þ

Since, the heat flux is also axially constant, Tb is ob-

served to increase linearly with x3 according to the

overall energy balance condition. Now, the local (i.e.,

cross-section averaged) heat transfer coefficient and the

Nusselt number are evaluated as

hx3 ¼
qw

T w � Tb
ð28Þ

Nux3 ¼ hx3a=k ð29Þ

Finally, the pitch-averaged quantities are evaluated

as

�hh ¼ 1

H=2

Z H=2

0

hx3 dx3 ð30Þ

Nu ¼ �hha=k ð31Þ

4.2. Experimental data

In order to verify the computed data to be presented

in the next section, pressure drop measurements are

carried out in an acrylic passage of square cross-section,

9.5 mm sides and 3000 mm long. The first 1000 mm of

the duct is provided for the development of the flow and

fully developed flow is expected to prevail over the last

2000 mm of the length. The passage is made by milling

to form a 9.5 mm deep and 9.5 mm wide groove in a 25

mm thick acrylic sheet. The groove is then covered with

5 mm thick acrylic strip and bolted. The detailed design

and fabrication of the duct is available in Ref. [3].

The pressure taps are fixed on the top plate of the

duct. These taps consist of a 1.5 mm diameter and 2.5

mm deep hole, followed by a 5 mm diameter and 2.5 mm

deep hole. In the later holes, around 50 mm long copper

tubes of same outer diameter are press fitted. To make

these joints leak proof and permanent, synthetic adhe-

sives are used. Flexible plastic tubes are connected at the

end of these copper tubes. Whenever reading from a

particular pressure tap is required, the flexible tubes are

attached to the manometer. In the set-up, altogether 20

pressure taps are provided to measure the axial variation

in pressure. Out of these, 10 pressure taps, at a distance

of 100 mm, are located in the developing section (within

first 1000 mm), where the pressure drop is expected to be

higher. The rest of these taps are mounted in the de-

veloped section (the last 2000 mm) at a distance of 200

mm. The pressure drops are measured using mano-

meters with benzyle alcohol, carbon-tetra-chloride, and

mercury as working fluids to cover different ranges of

Reynolds number. The fully developed friction factors

are calculated on the basis of the pressure drop data,

measured over the last 2000 mm of length. Thus, even

for Y ¼ 10:28, nearly 10 pitch lengths could be accom-

modated in the developing section and hence, the results

presented in this paper are indeed for fully developed

flow.

Water is used as the working fluid in the present

study. The water temperature is measured to calculate

the fluid properties. For lower Reynolds number

ð100 < Re < 3000Þ, the fluid is allowed to flow from an

overhead tank, where a constant head is maintained.1 Computations are carried out using d=a ¼ 0.
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For higher flow rates, however, the direct discharge

from the centrifugal pump is allowed to flow through the

test section. The flow rate is calculated by collecting the

water in a volumetrically calibrated tank for a period of

about 5–10 min, depending upon the flow rate. The

uncertainties associated with the present experiment are

discussed in detail by Ray [3], which show that, for

laminar flow, the maximum uncertainties in Reynolds

number and friction factor are within 
4% and 
8%

respectively, whereas, for turbulent flow, they are within


3% and 
6% respectively.

Since the pressure drops are measured at discrete

locations and the flow is periodically fully developed, it is

not possible to exactly estimate the development lengths

at different values of Y . However, over the last 2000 mm

length, the pressure variation indeed appears to be linear

when nearly corresponding locations are considered [3].

For lower values of Y , linearity in pressure variation is

detected over a much larger length [3]. The measured

friction factors for empty square duct and for Y ¼ 10:28,
5.64 and 3.14 are shown in Fig. 3. In the experiments

tapes are made of 0.3 mm metallic strips, such that,

d=a ¼ 0:3=9:5 � 0:032. The data for empty duct show

excellent agreement with analytical solutions for laminar

flow and with the well established empirical correlations

for turbulent flow. The transition Reynolds number

range appears to be from 1500 to 3000.

The data for different twist ratios however do not

appear to demonstrate any change corresponding to

laminar-to-turbulent transition. This trend is typical of

twisted tape flows as is reported by Manglik and Bergles

[12,13], in a recent review of data on flow in a circular

tube with twisted tape insert. The present data however

match with the expectation that, at a fixed Reynolds

number, as Y decreases (or, twist becomes tighter) the

friction factor increases.

4.3. Results for laminar flow

4.3.1. Friction factor

The straight tape represents the limiting case of

twisted tape flow, with Y ! 1. If the tape is inserted

such that its two ends along the width touch the op-

posite sides of the square duct, we obtain flow in a

rectangular passage, with aspect ratio 2, under consider-

ation. For this case, secondary flow is absent and the

Fig. 3. Experimental friction factor data: (a) empty square duct, (b) Y ¼ 10:28, (c) Y ¼ 5:64 and (d) Y ¼ 3:14.
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analytical solution [14] is f Re ¼ 34:983. The present

code yielded f Re within 0.5% of the above value irre-

spective of the value of bp (or, Reynolds number).

Computations for twisted tape are carried out for Rey-

nolds number up to 1100 since the transition to turbu-

lent flow can be expected at a lower Reynolds number

than observed for empty square duct.

Fig. 4 shows the predicted variation of f with Re for

different values of twist ratio, Y . The smaller the value of

Y , tighter is the twist and thus at a fixed Re, the friction
factor increases with reduction of Y . At very low Rey-

nolds numbers, the magnitude of secondary flow (i.e., u1
and u2 components) decreases and the friction factor

asymptotically approach Y ! 1 line, irrespective of the

value of Y . The above data can be correlated with a

maximum deviation of 
5% by the following correla-

tion:

f Re ¼ 36½1þ 0:15Sws

1=1:3 ð32Þ

where Sws
is a notional indicator of the strength of the

secondary flow and is given by

Sws
¼ Re

Y

	 
3=4
1þ 0:01Y 4

Y 6

� �1=4
ð33Þ

Fig. 5 shows the comparison of the experimental data

in the laminar range ðRe6 1100Þ. The correlation pre-

dicts the experimental data within 
10%. This some-

what greater deviation may be attributed to the effect of

tape thickness, which is ignored in the computations and

to the probable but negligible non-uniformity of the

pitch of the tape in the experiment, which may be con-

sidered as an inevitable manufacturing defect. Shah and

London [14], for example, estimated the effect of tape

thickness in a circular tube to be up to 10%.

4.3.2. Nusselt number

For limiting case of Y ! 1, we have a rectangular

duct of aspect ratio 2, with two shorter and one of the

longer sides being heated and the other longer side being

insulated, since, the tape is assumed to be non-con-

ducting. This case of fully developed laminar flow heat

transfer is governed by Poisson�s equation for tempera-

ture. The equation has been solved analytically by

variational method [3], which results in Nu ¼ 3:96. The
present computer code yielded Nu within 0.2% of the

analytical value.

Fig. 6 shows values of local Nusselt number, Nux3 , for

Pr ¼ 5 at different Reynolds number and twist ratios,

over the length 2H (i.e., over four times the distance

required for short distance periodicity). The data verify

that Nux3 is indeed periodic with the ratio of maximum

to minimum varying between 1.02 and 1.17. Higher the

Reynolds number, higher is the ratio. Similar increase in

the ratio is also observed with increase in Prandtl

number from 1 to 500, when Re is fixed [3]. The most

important observation however is that the local Nusselt

number peaks at cross-sections where the tape is aligned

with the diagonal of the duct (or, when h ¼ 45�), irre-
spective of the value of Re, Pr and Y . At these locations

the free flow area (see Fig. 1) is maximum and the re-

sistance to cross-flow is minimum. As a result, the fluid

that flows around the tape in a narrow region, near the

corners of the cross-section, thus provides substantial

wash in these regions of weakest heat transfer at all other

angles. Hence, the local Nusselt number also peaks at

these axial locations. This will be more evident from the

isotherms, presented in Fig. 8, which clearly indicate the

existence of high heat transfer in the wash region.

Fig. 7 shows the variation of pitch-averaged Nusselt

number, Nu with Re for different Pr and Y . The figure

shows that compared to Nu1 ¼ 3:96, twisted tapes en-
Fig. 4. Variation of computed f with Re for laminar flow

ðRe6 1100Þ.

Fig. 5. Comparison of experimental data with present corre-

lation for laminar flow.
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hance heat transfer considerably at high Prandtl num-

bers. The computed data are correlated within 
10% by

the following relation:

Nu ¼ 3:96 1

"
þ 0:016Pr1:05

Re
Y

	 
1:25
#1=2:6

ð34Þ

4.3.3. Flow structure

Fig. 8 shows typical distribution of secondary flow,

axial velocity and temperature at a tight twist ratio

Y ¼ 1:5, and Re ¼ 404, with Pr ¼ 1, 50 and 500 for

h ¼ 45� (i.e., x3 ¼ H=4). In the figure, velocities are

normalised with respective to the average axial velocity

and the isotherms are plotted for ðT � TbÞ=ðT w � TbÞ.
The figure shows that twisted tape generates high sec-

ondary flow (peak value varies from 10% to 110% of

the mean axial velocity, depending on the value of Y )
and skewed axial velocity profile with peak values lo-

cated away from the geometric center. The tempera-

ture profiles show a large uniform temperature core with

greater part of the temperature variation occurring

near the duct walls, particularly at higher Prandtl

numbers.

4.4. Results for turbulent flow

4.4.1. Friction factor

The turbulent flow predictions are carried out with

high Reynolds number form of k–e model of turbulence,

with linear eddy viscosity model. Computations are

performed for the case of Y ! 1 (rectangular duct of

aspect ratio 2) for 80006Re6 67000. The values of

predicted f are found to be consistently lower by 12–

13%, as compared to the correlated values from f ¼
0:0791Re�0:25 (both f and Re defined on the basis of

hydraulic diameter). This is to be expected since the

linear eddy viscosity model cannot predict normal stress

driven secondary flows encountered in fully developed

turbulent flows in ducts with sharp corners [15]. In spite

of this inadequacy, the k–e model is used for the pre-

diction of twisted tape flow, because now the magnitude

of the secondary flow is comparable to that of the axial

flow and the isotropic turbulence model can still be

Fig. 6. Variation of Nux3 with x3=H for laminar flow Pr ¼ 5.

Fig. 7. Raw computation data of Nu for laminar flow.
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expected to provide reasonably good prediction of at

least the integral quantities, such as, the friction factor

and the Nusselt number. The effect of twist ratio is

studied by carrying out computations for Y ¼ 10, 5, 3.5

and 2.5. The variation of f with Re is presented in Fig. 9.

The computed data could be correlated as

Fig. 8. Distribution of (a) secondary velocity, (b) axial velocity, (c) isotherms for Pr ¼ 1, (d) isotherms for Pr ¼ 50 and (e) isotherms

for Pr ¼ 500, for laminar flow with Y ¼ 1:5 and Re ¼ 404 at h ¼ 45�.
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f ¼ 0:0791

Re0:25
5:5445

"
� 9:6649

Y
Y � 1

	 


þ 5:4428
Y

Y � 1

	 
2
#

1

"
þ 0:0281Y 0:0393

ðRe=104Þ4:08

#0:0732

ð35Þ

Fig. 10 shows the comparison of the above correla-

tion with the present experimental data. These data

agree within 
15% with the correlation. The present

correlation, along with the experimental data, for

Y ¼ 5:64 is also compared with the correlations pro-

posed by Mano et al. [1] and Bhadsavle [2] in Fig. 11.

The figure clearly shows that both the previous corre-

lations compare reasonably well with the experimen-

tal data only in narrow ranges of Reynolds number.

For example, the correlation of Mano et al. [1] agrees

well with the experimental data for 30006Re6 5500,

whereas, Bhadsavle�s [2] correlation provides good

agreement for 40006Re6 7000. However, for higher

Reynolds number, Mano et al. [1] under-predicts and

Bhadsavle [2] over-predicts the present experimental

data. It is also evident from the figure that the present

correlation, obtained from the numerical study, works

by far the best for the entire range of Reynolds number

ð30006Re6 32000Þ.

4.4.2. Nusselt number

The Nusselt number data are computed for Pr ¼ 1, 5,

20 and 50. To the best of our knowledge, there are no

experimental data for rectangular duct (case of Y ! 1,

with one of the longer walls being insulated) available

in the open literature. However, comparison with Nu ¼
0:023Re0:8Pr0:4 (Nu and Re both defined on the basis of

Fig. 9. Variation of computed f with Re for turbulent flow.

Fig. 10. Comparison of experimental data with present corre-

lation for turbulent flow.

Fig. 11. Comparison of different turbulent flow correlations

ðY ¼ 5:64Þ.

Fig. 12. Variation of computed Nu with Re for turbulent flow.
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hydraulic diameter) showed under-prediction by about

15% at Pr ¼ 1, but agreement within 
5% at higher

Prandtl number.

The computed data for finite twist ratios are pre-

sented in Fig. 12. These data could be correlated within

)5% and þ10% by the following correlation:

Fig. 13. Distribution of (a) secondary velocity, (b) axial velocity, (c) turbulent kinetic energy, (d) length scale and (e) isotherms for

Pr ¼ 1, for turbulent flow with Y ¼ 2:5 and Re ¼ 29742 at h ¼ 45�.
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Nu ¼ cRen1 1

�
þ w

Y n2

�
ð36Þ

where

c ¼ 0:023Pr0:4 0:5426

�
þ 0:3724ffiffiffiffiffi

Pr
p þ 0:4628

Pr

�
ð37Þ

n1 ¼ 0:8546þ 0:043ffiffiffiffiffi
Pr

p þ 0:0655

Pr
ð38Þ

w ¼ 0:8654Pr�0:18 ð39Þ

n2 ¼ 0:8306� 0:022Pr þ 0:0004Pr2 ð40Þ

Since, the variation in the local (i.e., cross-section

averaged) Nusselt number is not significant along the

length of the duct, it is not presented here.

4.4.3. Flow structure

Typical secondary flow, axial velocity, turbulent ki-

netic energy, length scale and the temperature distribu-

tion for Y ¼ 2:5 at x3 ¼ H=4 (i.e., h ¼ 45�) are presented
in Fig. 13. The figure clearly shows the presence of

strong secondary circulation in the duct. As expected,

the maximum change in the axial velocities occurs near

the solid surfaces. As a result, a large portion in the flow

domain experiences almost uniform flow, with the

maximum axial velocity being of the order of 120% of its

mean. The kinetic energy levels are high near the solid

surfaces as would be expected. The length scales increase

with the distance from the wall and their distribution is

dominated by the convection due to secondary flows.

The isotherms for Pr ¼ 1 show that the maximum tem-

perature variation occurs near the heated walls of the

duct and the temperature of the bulk fluid remains al-

most uniform through out the cross-section.

5. Conclusion

The following are conclusions of the present paper:

1. Periodically fully developed flow and heat transfer in

a square duct with twisted tape insert are computed

using numerically generated non-orthogonal, non-

staggered grids. The novel feature of the numerical

method is the use of smoothing pressure correction

to eliminate the problem of check-board prediction

of pressure.

2. The laminar flow friction factor data for 406Re6
1100 and 1:56 Y 6 10 are correlated by

f Re ¼ 36½1þ 0:15Sws

1=1:3

where the definition of Sws
is given by Eq. (33).

Agreement with the experimental data is within


10%.

3. The pitch-averaged laminar flow Nusselt number for

Re6 1100, 1:56 Y 6 10 and 0:16 Pr6 500 with non-

conducting tape are correlated by

Nu ¼ 3:96 1

"
þ 0:016Pr1:05

Re
Y

	 
1:25
#1=2:6

4. The laminar local Nusselt number shows axial varia-

tion occur over H=2 length in a repetitive manner,

with the ratio of maximum to minimum Nusselt num-

ber varying between 1.02 and 1.17. Higher values of

the ratio are encountered at higher Re and Pr. The
maximum local Nusselt number occurs at a cross-sec-

tion where the tape is aligned with the diagonal of the

duct. In turbulent flow, the axial variation of Nu is

not significant.

5. The turbulent flow friction factor data for 40006

Re6 60000 and 2:56 Y 6 10 are correlated by

f ¼ 0:0791

Re0:25
5:5445

"
� 9:6649

Y
Y � 1

	 


þ 5:4428
Y

Y � 1

	 
2
#

1

"
þ 0:0281Y 0:0393

ðRe=104Þ4:08

#0:0732

The agreement with the experimental data is within


15%.

6. The pitch-averaged Nusselt number for turbulent

flow for 40006Re6 60000, 2:56 Y 6 10 and 16

Pr6 50 are correlated by

Nu ¼ cRen1 1

�
þ w

Y n2

�

where the expressions for c, n1, w and n2 are given by

Eqs. (37)–(40).
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